1、收集预料
- 自己写个爬虫去收集网页上的数据。
- 使用别人提供好的数据
2、对预料进行去噪和分词
- 我们需要content其中的值,通过简单的命令把非content 的标签干掉
cat news_tensite_xml.dat | iconv -f gbk -t utf-8 -c | grep "
" > corpus.txt - 分词可以用jieba分词:
#!/usr/bin/env python#-*- coding:utf-8 -*-import jiebaimport jieba.analyseimport jieba.posseg as psegdef cut_words(sentence): #print sentence return " ".join(jieba.cut(sentence)).encode('utf-8')f = open("corpus.txt")target = open("resultbig.txt", 'a+')print 'open files'line = f.readlines(100000)num=0while line: num+=1 curr = [] for oneline in line: #print(oneline) curr.append(oneline) ''' seg_list = jieba.cut_for_search(s) words = pseg.cut(s) for word, flag in words: if flag != 'x': print(word) for x, w in jieba.analyse.extract_tags(s, withWeight=True): print('%s %s' % (x, w)) ''' after_cut = map(cut_words, curr) # print lin, #for words in after_cut: #print words target.writelines(after_cut) print 'saved %s00000 articles'% num line = f.readlines(100000)f.close()target.close()
3、运行word2vec输出每个词的向量
-
./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -binary 1
输出为vectors.bin
- 然后我们计算距离的命令即可计算与每个词最接近的词了:
./distance vectors.bin
4、现在经过以上的熟悉,我们进入对关键词的聚类:
- 则只需输入一行命令即可:
./word2vec -train resultbig.txt -output classes.txt -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -classes 500
-
然后按类别排序,再输入另一个命令:
sort classes.txt -k 2 -n > classes.sorted.txt